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Abstract— In many industrial robotics applications, multiple
robots are working in a shared workspace to complete a set
of tasks as quickly as possible. Such settings can be treated
as multi-modal multi-robot multi-goal path planning problems,
where each robot has to reach an ordered sequence of goals.
Existing approaches to this type of problem solve this using
prioritization or assume synchronous completion of tasks, and
are thus neither optimal nor complete. We formalize this
problem as a single path planning problem and introduce a
benchmark encompassing a diverse range of problem instances
including scenarios with various robots, planning horizons, and
collaborative tasks such as handovers.

Along with the benchmark, we adapt an RRT* and a PRM*
planner to serve as a baseline for the planning problems.
Both planners work in the composite space of all robots and
introduce the required changes to work in our setting.

Unlike existing approaches, our planner and formulation is
not restricted to discretized 2D workspaces, supports a changing
environment, and works for heterogeneous robot teams over
multiple modes with different constraints, and multiple goals.

Videos and code for the benchmark and the plan-
ners is available at https://vhartman.github.io/
mrmg-planning/.

I. INTRODUCTION

As adoption of robots increases and simple tasks become
more and more automated, it will be more and more impor-
tant to deploy solutions that are not only able to work longer
and cheaper but also are competitive in throughput with hu-
mans. In order to achieve this, in many cases, multiple robots
need to be used and effectively coordinated in the same
workspace: Enabling motion planning for multiple tasks with
multiple robots is crucial in order to maximize the usefulness
of robots in industrial settings. While workcells with multiple
robots exist, the robots typically act independent from each
other in order to simplify the programming and avoid dealing
with robot-robot interactions.

Most work in continuous multi-robot planning is focusing
on single-goal settings where all robots starting from their
respective starting points at the same time and reach their
respective goals simultaneously [1]–[3]. Conversely, in most
real use cases, multiple robots need to do multiple tasks
in sequence, e.g., welding multiple points in a welding
application, or picking and placing multiple things after
another in order to sort objects. Since the robots act in
the same environment in these scenarios and thus possibly
block each other from doing their respective task, we can
not formulate the problem at hand as a sequence of path
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Fig. 1: Examples of problems with their initial state (left) and
goal state (right): (top) two robots cooperating to reorient boxes,
(bottom) four robots stack boxes on top of each other.

planning problems, but need to solve the multi-robot multi-
goal planning problem if we want to find an optimal solution.

The work on multi-modal planning can be seen as multi-
goal planning problem. Multi-modal path planning [4]–[7]
finds paths through sequences of modes, i.e., through varia-
tions of a continuous configuration space that occur, e.g., by
grasping an object, or moving an object in the workspace.
This means that in each mode a different set of constraints is
active. Most work on multi-modal path planning for robots
only considers single-robot settings.

On the other hand, multi-agent path finding (MAPF) [8],
[9] deals with high numbers of agents, but typically considers
grid-like 2d environment with disk robots, as e.g., found in
warehouses. MAPF was extended to consider multiple goals
in the setting of multi agent pickup and delivery (MAPD)
[10]. These approaches do not directly transfer to a changing
environments and continuous configuration spaces.

Our contributions in this paper are
• a formalization of multi-modal, multi-robot, multi-goal

path planning in continuous spaces,
• two probabilistically complete and almost-surely

asymptotically optimal planners based on an RRT*
planner, and a PRM* planner, respectively.

We open-source an easily accessible multi-modal, multi-
robot, multi-goal motion planning benchmark containing 21
different base-scenarios with up to 74 subgoals, that can
be further adjusted in difficulty by changing the number of
robots and tasks.

Our goal with the planners is not to provide planners with
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TABLE I: Comparison of path planning approaches.

Approach Examples Multi-
Robot

Multi-
Goal

Multi-
Modal

Contin-
uous Complete Opt.

MAPF [8], [9] ✓ ✓ ✓

MAPD [10], [11] ✓ ✓ ✓ ✓

Multi-Robot
Planning [12]–[15] ✓ ✓ ✓ ✓

Multi-Modal
Planning [4], [5] ✓ ✓ ✓ ✓ ✓

Prioritized
planning [16]–[18] ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ ✓ ✓ ✓

the highest performance possible, but rather to to make the
problem accessible and provide baselines.

II. RELATED WORK

Most multi robot planning work focusing either on the set-
ting where all robots share the same work and configuration
space, or on solving single goal problems. It is commonly
assumed that the environment stays completely static during
planning, therefore excluding manipulation planning settings.
We try to group the different research areas and their
respective focus in Table I. In the following, we discuss
single-goal multi-robot planning and MAPF more in-depth.

A. Continuous Multi Robot Planning

A simple approach to multi-robot-planning is planning in
the composite space of all robots [14], and applying standard
methods such as RRT(*) [19] or PRM(*) [20] in this higher
dimensional space. This approach is not scaleable to many
robots or high degrees of freedom.

There are various approaches to tackle this limitation.
Discrete RRT (dRRT(*) [13], [21]), builds a roadmap for
each robot, and combines them to implicitly form a tensor
graph. Instead of planning naively on the implicit graph,
an RRT-like strategy is proposed to explore this implicit
graph. Fast-dRRT [17] applies this approach sequentially
on the subproblems to solve multi-goal problems. M* [1]
proposes to plan in the separate spaces when possible, and
planning jointly only where required, i.e., when conflicts
between the single-robot plans arise. Similarly, conflict based
search (CBS) [22] plans for each robot individually, and
introduces constraints to solve conflicts between single agent
plans. CBS originates form the MAPF-setting, but can also
be applied to continuous multi robot planning problems [12],
[23], [24].

Prioritized planners as proposed in, e.g., [15], [16], [18],
[25] achieve more scaleable solvers by not requiring com-
pleteness and optimality. Similarly, [26] proposes a scaleable
approach that is based on operator splitting and sampling,
and while the approach is complete, it is not optimal.

To the best of the authors knowledge, there are no multi-
modal multi-robot multi-goal planners that are complete and
optimal in the general setting. The prioritized planners can
be used to plan for multi goal problems by incrementally
generating a path per agent, and considering it as fixed for
the later planning problems as done in [16], [18].

A slightly different approach is taken in [27], where plans
for the separate robots are planned, and then - if conflicts
between the paths arise - fixed by introducing pauses.

Compared to the previously introduced works, we are
interested in optimally solving multi-robot multi-goal plan-
ning problems without any restricting assumptions. Further,
we are interested in manipulation planning problems, i.e.,
problems where the environment changes through the actions
of the robot.

B. Multi Agent Path Finding

Compared to multi robot path planning, multi agent path
finding [9] generally refers to planning in grid-like 2D
environments with disk-robots, as found in warehouses. A
common approach to solve this problem is conflict based [22]
or priority based search (PBS) [28]. There are many works
that improve upon the initial approach, such as improved
conflict based search [29], or bounded suboptimal CBS [30],
which scale to 1000s of agents.

Multi agent pickup and delivery (MAPD) refers to the
setting where we do not only intend to go from point A to
point B, but traveling between multiple points of interest, as
part of a single planning problem [10]. While MAPD can be
framed as lifelong MAPF problem, i.e., once an agent has
finished its task of the MAPF problem, a new goal is assigned
to the robot, these solvers are suboptimal [31]. Multi-label
A* [11] (MLA*) extends the classic A* algorithm to a
sequence of multiple goals, and is able to optimally solve
MAPD problems. Both MAPF and MAPD planners typically
assume that the environment remains unchanged over the
planning duration.

III. MULTI ROBOT MULTI GOAL PATH PLANNING

Informally, our objective is to find a path for each robot
that passes through a sequence of goals that minimizes
a cost (e.g., minimizing the latest completion time of all
robots) while being collision free. Some of the goals might
involve multiple robots: a handover of an object between
two robots implies a constraint on two robots. A goal could
imply a mode transition, i.e., a robot grasping something and
thus changing the environment for the remaining planning
problem.

A. Preliminaries

Before formalizing the problem, we introduce the com-
ponents that are required: the tasks, the concept of a mode,
and the state space that we plan in. We follow the work
from Thomason [4], and generalize it to multiple robots.
Compared to [4], we do not consider task planning.

1) Task: A task S consists of the robots that are assigned
to the task, and a set of constraints g1 that need to be fulfilled
to consider the task done. A task can have post-conditions
that can alter the scene-graph of the environment, i.e., which
objects are linked to each other. As example, consider the
task ’robot r1 grasps object o1’: Here, the goal constraints

1Typically, the constraint g is a single goal pose or a goal region, but can
also be a more complex constraint such as a grasp constraint.



are that the robot is grasping o1, and the post-condition is
that o1 is linked to the end-effector of the robot.

We use s ∈ SR = Sr1 × ... × Srn to denote the task
assignment of all robots, where Sri is the set of tasks that
are assigned to robot ri.

2) Modes: The constraints from a task can be fulfilled by
various different poses, which might affect the environment
that we plan in. Consider again the grasping-task: the robot is
able to fulfill a grasping constraint by grasping from any side.
This changes the collision geometry that we need to consider
in the rest of the planning problem, and it might influence
how the constraints for follow-up tasks can be fulfilled. We
use mode to refer to the combination of the discrete task
assignment s (which implies a scene-graph), and the poses
of all movable objects, defined by the relative transformation
to their parent-frames. Compared to related work ( [4], [32]),
in this work a mode implies what each of the robots is doing.

3) Task sequence: A task sequence can be specified either
as total ordering, fully determining which tasks come after
another, or as dependency graph by specifying which tasks
depend on others being fulfilled, which can be processed
into a full ordering per robot. We require the terminal task
to involve all robots in both the graph and the sequence. Both
described specifications can be expressed as dependency
graph. We thus describe a task sequence as a dependency
graph G = (S,E), with the tasks S ∈ Sri , and the directed
edges between tasks E ∈ (Sri × Srj ). Some examples of
how a task sequence can be specified are in Fig. 2.

A given (partial) task sequence implies all possible tran-
sitions between task assignments (Fig. 3), and thus all valid
task assignment sequences. We use M to denote the set of
all valid task assignment sequences that bring us from the
start to the goal, and obey the constraints imposed by the
dependency graph.

4) State Space: The space in which we describe a path
is the composite space of all robots, all objects, and which
tasks are currently active per robot:

Q = Qr1 × · · · × QrN︸ ︷︷ ︸
QR

×Qo × Sr1 × · · · × SrN︸ ︷︷ ︸
SR

. (1)

Here, Qri is the configuration space of robot ri, and
correspondingly, QR is the composite configuration space
of all robots; Qo is the composite configuration space of
all objects.We use Qfree ⊆ Q to denote the part of the
configuration space that is collision-free.

Clearly, not all degrees of freedom are actuated. We
assume that we can only plan for the robots’ degrees of free-
dom directly, and all others need to be influenced indirectly.

B. Problem formulation

Bringing everything together, a multi-modal, multi-robot,
multi-goal path planning problem is given by the tuple
(R,QR, qstart, G), where R is the set of robots, QR is the
configuration space of the robots, qstart is the initial state, and
G is the dependency graph of the tasks. In the following, we
will use qri for the pose of robot ri.

We want to find a collision free path π(t) : R → QR

and the task assignment sequence s(t) : R → SR, while
minimizing some cost function c(·). The path π maps time
to the joint robot state QR, and the mode sequence s(t)
maps time to the task assignment SR, which together imply
the scene-graph at a time, and thus the poses of all objects.

This can be written as optimization problem:

min
π,s

c(π, s) (2a)

s.t. π(0) = qstart (2b)
g(π(t), s(t) ≤ 0) ∀ t (2c)
s ∈ M (2d)
π(t) ∈ Qfree(s(t)) ∀ t, (2e)

where (2a) is the cost term, (2b) is the initial condition, (2c)
and (2d) ensure that the constraints that are imposed by the
mode sequence hold, and that the mode sequence is a valid
one, and finally (2e) is the constraint for ensuring that the
path is collision free.

1) Cost functions: We are often interested in finding
the minimum makespan plan. However, purely minimizing
makespan can lead to optimal paths that bring undesired
side-effects, e.g., containing unnecessary movement. Thus,
we consider cost functions of the family

c(q1, q2) = (1−w)max
r

||qr1−qr2||2+w
∑

r
||qr1−qr2||2. (3)

where if w is small, we get a minimum makespan optimiza-
tion problem (which is ‘regularized’ by the path length), and
if w is 1 we sum the cost of the robots.

IV. PLANNERS

We introduce an RRT based planner and a PRM based
planner as baselines for the problems we propose. In both
these sampling based planners, the space we plan in is
the previously defined one. However, instead of directly
sampling the (unactuated) object poses, we sample x =
(q,m), where q ∈ QR is a pose containing all robots’ poses
and m is a mode that determines the task assignment and
all object poses. We elaborate on how modes are sampled
in Sections IV-A and IV-B. We then proceed in both the
PRM* and the RRT* planners as their standard version
would, with an adjusted distance function that accounts for
the connectivity between the modes. Before discussing the
details of the planners, we discuss the distance function used
in the planners, and the concept of the informed set [33].

1) Distance functions: Similar to [4], we assume that any
node in a different mode is inaccessible except through the
transition nodes:

d(x1, x2) =

{
dmode(q1, q2) if m1 = m2,

∞ otherwise.

For the in-mode distance any metric can be chosen; the work
in [34] discusses distance metrics in multi-robot problems
in more depth. For our planners, we choose the maximum
of the per-robot L2 distance, as this performed best in our
experiments.



Fig. 2: Examples for the different ways in which a goal sequence can be specified: (left) As a sequence of goals (middle) as a partially
ordered sequence and (right) as a per-robot ordered sequence.

Fig. 3: Example of a mode-graph that is implied by the dependency
graph on the left. The modes with full opacity are an example for
how a set of modes can be incrementally be reached. Each mode can
be reached with many different parameterizations θi, as indicated
for mode [4, 2].

2) Locally informed sampling: The informed set [33] can
be used to restrict the set of points that we need to consider
for planning to the ones that can improve the current solution.
The informed set in our problem is

Qinf = {q | clb(qstart, q) + clb(q,Qgoal) ≤ cbest}, (4)

with Qgoal denoting the set of possible goal poses.
In our setting, the optimal paths are typically long com-

pared to the size of the state space, and therefore, the
informed set is typically larger than the valid configuration
space (similar as in [35]).

Given that we do know that a solution needs to pass
through some regions in space, the standard approach of
taking the cost function as clb is not approximating the
true path cost well. The main problem then is that the path
constraints from the tasks are constraints for subspaces of the
full composite space (i.e., even if we know that robot ri needs
to be at pose qg1 first, robot rj might be unconstrained), and
it is thus not trivial to construct a good lower bound for
the path-cost. Additionally, compared to the euclidean norm,
our cost function does not easily allow for direct sampling
from the informed set, therefore requiring rejection sampling,
which can be compute intensive.

To alleviate these issues, we propose locally informed
sampling: instead of using the start and the goal pose in
Eq. (4), we randomly sample two points qi, qj on the path,
and do informed sampling with these points:

Qlis = {q | c(qi, q) + c(q, qj) ≤ cπ(qi, qj)}, (5)

where cπ(·) is the cost to reach a point on the path along the
best found path.We extended this to the sampling of modes
by sampling from the set of modes that are in-between the
modes that qi, qj are in respectively. This set of in-between
modes can be inferred from the task dependency graph.

Algorithm 1: Composite Multi Goal RRT*.

1 T ← {q0}, M ← {m0}
2 while not terminated do
3 qrnd,mrnd ←SampleWithGoalBias()
4 nclose ←T.get nearest(mrnd, qrnd)
5 nnew ←Steer(nclose, qrnd)
6 T.add(nnew)
7 T.rewire(nnew)
8 if nnew is subgoal
9 M

+←− getNextMode(nnew)

10 if improved solution and do shortcutting
11 sol←shortcut
12 T.addPath(sol)

Algorithm 2: Composite Multi Goal PRM*.

1 G← {q0}, sol← {}
2 while not terminated do
3 G←SampleTransitionNodes()
4 G←SampleReachedModes()
5 if GoalNodeFound()
6 sol←G.search()
7 if improved solution and do shortcutting
8 sol←shortcut
9 G.addPath(sol)

10 return sol

A. Composite RRT*

We introduce the required changes to a standard RRT*
planner [19], [36] to make it work in the multi-modal multi-
goal setting (Algorithm 1): The core ideas are the same
- we randomly sample a state consisting of a pose and a
mode. We maintain a set of previously reached modes M ,
which is initialized with the start mode. We then sample
a valid mode/pose combination either by sampling a mode
uniformly at random from the reached modes M , and then
sampling a pose uniformly in this mode, or if we previously
found a path, we use locally informed sampling to sample
the mode and the pose. We then search the closest state in
our tree (according to the distance function), and grow the
tree towards the randomly sampled state. The new state is
added to the tree and the tree is rewired. If the new state is
a transition (i.e., a pose fulfilling the goal constraints of a
task), we add the mode that we reach from this transition to
the set of reached modes. We do shortcutting (Section IV-
C) once a solution is found to improve convergence of the
planners [37].

We also introduce a bidirectional variant, which samples
goals in each mode (which are used as starts in the next
mode), and then runs bidirectional RRT* in each mode.



(a) 2D hallway. (b) 2D random. (c) Bottle insertion. (d) Multi waypoints. (e) Rearrangement. (f) Mobile assembly.

Fig. 4: The initial states of a selection of problems that are available in the benchmark. The poses that have to be reached by the robots
or objects are drawn with lower opacity or indicated with a marker.

Algorithm 3: Multi-robot multi-modal partial shortcutting.

1 while not terminated do
2 r ←sampleRobot()
3 i, j ←sampleIndices()
4 if IsShortcuttable(r, i, j)
5 p←constructShortcutPath(sol, r, i, j)
6 if couldImproveCost(p) and

isCollisionFree(p)
7 sol←updatePath(sol, p)

8 return sol

B. Composite PRM*

We introduce the required changes to a PRM-based plan-
ner [20] to adapt it to our setting (Algorithm 2). We build our
roadmap by first sampling a batch of transition nodes (i.e.,
nodes that fulfill the constraints of a task), which enlarges
the set of reached modes. We then sample a batch of nodes
in the modes that we reached so far (using locally informed
sampling if we found a solution, uniformly at random if not).
If we found a transition that allows us to reach to goal, we
then run an A* search over the multi-modal graph formed
by all the samples so far (which is similar to MLA* [11]).
We implement this search using an edge queue, which allows
delaying edge validation until the edge is inspected, therefore
minimizing collision checking effort. To select neighbors, we
choose a radius based approach, with the radius determined
as in [36]. Similar to the RRT planners, we do shortcutting
after a path was found that improves the current solution.

Heuristics: For the search of the graph that we are
incrementally building, we require a heuristic. The heuristics
in our setting present a tradeoff between being useful and
being fast to compute. We compute a heuristic by running
a reverse search on the transition nodes to compute a
lower bound on the cost to reach a mode. The heuristic
is then the sum of the cost to reach a specific transition
and the cost to reach the goal from this transition mode:
h(q) = mini c(q, q

trans
i )+clb(q

trans
i ), where qtrans are the poses

belonging to transition nodes in a mode.

C. Postprocessing

We also introduce a path post-processing method that
is specifically tailored to the multi-goal motion planning
problem. Our approach (Algorithm 3) builds on top of partial
shortcutting [38]. The main idea is that we do not shortcut
all dimensions of the path at once, but select a subset of

dimensions from the composite space, and try to shortcut
only this subset, while keeping the rest of the plan the same.
Instead of uniformly sampling from all possible subsets, we
notice that in practice it is more efficient to sample a robot,
and then shortcut all robot dimensions at once. This enables
improving the unconstrained parts of the path (i.e., the parts
that do not influence a mode-transition), while still keeping
the simplicity of the shortcutting approach.

D. Proof sketches

Both planners uniformly sample all transitions, and sample
uniformly within the modes, therefore eventually discovering
all possible modes. Within the modes, both planners work as
their respective base version, and are therefore probabilisti-
cally complete, and will eventually connect to the transitions.
If a path exists, the discovered transitions will lead to the
terminal mode, which contains the goal pose. Thus, both
planners will find a path if one exists, and are therefore
probabilistically complete.

The proof sketch for almost-sure asymptotic optimality
follows similar logic: The A* search that we run in the
PRM-planner is optimal, and therefore, as the number of
uniform-random samples approaches infinity, we converge to
the optimal paths within the modes, and to the optimal mode-
transitions. Similarly, the rewiring-step in the RRT-planners
is the same as in RRT*, and thus inherits the optimality
guarantees from RRT* even over multiple modes.

V. BENCHMARK & EXPERIMENTS

The main contribution of this work is the open source
benchmark implementing a variety of scenarios with a di-
verse sets of robots and tasks. The 21 base scenarios range
from simple settings where the optimal solution path is
known to help validate properties of the planner, to more
complex scenarios with up to 5 robots (with a total of 30
degrees of freedom), and up to 22 goals. For many of the
problems, there is both a version with a full task ordering,
and one using a dependency graph as task specification. We
show a selection of scenarios in Fig. 4.

As the main goal of this work is the introduction of the
problem statement and making the problem accessible, and
not the fastest possible planner, the benchmark and planners
are implemented using Python, while the computationally
expensive parts, i.e., collision checking and kinematics are



(a) 2D hallway. (b) 2D random. (c) 4-arm box-stacking. (d) Mobile assembly.

RRT* BiRRT* PRM*

Fig. 5: Evolution of median cost over time along with the 95% non-parametric confidence intervals over 50 runs.

leveraging the python bindings of RAI2. This backend can
however easily be replaced, allowing for, e.g., GPU paral-
lelization if the backend supports it.

A. Experiments
We present a selection of tasks to showcase the different

types of scenarios and task sequence specifications and
compare the planners on them. We report results for four
representative scenarios: a 2D scenario with two robots that
is similar to the classic wall-gap, where the robots have to
switch positions and go back again (6D configuration, 3
subgoals, Fig. 4a), a 2D scenario with 3 agents that have
to reach a number of goals in sequence (9D conf. space,
13 subgoals, Fig. 4b), a scenario with 4 robot arms where
8 boxes have to be placed on top of each other (28D,
17 subgoals, Fig. 1), and a scenario involving 4 mobile
manipulators rearranging a wall (24D, 17 subgoals, Fig. 4f).
In these scenarios, the task sequences are fully determined
for the two 2D scenarios, and only partially given for the
robot-scenarios, i.e. the order and timing of each task needs
to be figured out by the planner. The tasks are assigned
randomly to a robot, and in all these instances, there is a
single goal pose for each subgoal.

If not specified otherwise, we consider the cost function
with w = 0.01, i.e., the min-makespan problem with a small
path-length regularization, and we report the median solution
costs over 50 runs along with confidence intervals.

The experiments were run with Python 3 on a Ryzen 7
5800X (8-core, 4’491 MHz) and 32 GB RAM.

B. Results
Figure 5 shows the resulting cost evolution plots. In

general, it is expected that the solution times for these
problems are higher than solution times for a ’standard’ path
planning problem. This is partially due to the length of the
plans, and therefore the larger collision checking effort, in
addition to the large search space, and partially due to the
problem structure: If the planner finds a path to a better
mode-transition, the rest of the path has to be completely
replanned for all following modes and mode-transitions.

The RRT-based planners are up to an order of magnitude
faster at finding an initial solution, while the PRM-planner
tends to converge faster to the optimal solution once an
initial path was found. Of the RRT-planners, the bidirectional
version is usually faster.

2https://github.com/MarcToussaint/robotic

Fig. 6: The optimal paths when using a max (left) or sum (right)
cost function in the 2D hallway scenario, where the robots have to
reach a goal on the other side and return. Color indicates time from
purple (start) to yellow (end).

Influence of the cost function: We illustrate the difference
of the sum-cost and the max-cost on the hallway example
in Fig. 6: Both robots go through the wall gap twice when
using the sum-cost, and do not make use of the passage at
the top, compared to the (regularized) max-cost, where they
make use of the passage at the top.

C. Ablations

In the following, we present ablations to explain design
decisions of the planning algorithms.

1) Locally informed sampling: As alluded to earlier, only
using naive sampling in the problems we consider here
is insufficient, as the informed set is large compared to
the configuration space, and thus in many cases does not
help much even compared to only using uniform sampling.
In Fig. 7, we show the planners using locally informed
sampling, and compare it to the naive informed sampling.
The planners using locally informed sampling outperform
the planners that do not. However, it can also be seen that
in the higher dimensional environment, the optimum is not
reached in the allotted planning time by either of the groups
of planners.

2) Shortcutting in the planner: Shortcutting a path after
it was found leads to faster convergence than using only
informed sampling, as can be seen in Fig. 8. Shortcutting in
the planner does not affect the optimality or completeness
properties of the planners, but does significantly improve
convergence by quickly cutting down on the maximum cost
that the planners need to consider. This effect is more
pronounced in high-dimensional scenarios.

3) Connection strategy: Using k-nearest neighbors in the
PRM-planner results in finding the initial solution faster, but

https://github.com/MarcToussaint/robotic


RRT* BiRRT* PRM*

Fig. 7: Local (solid line) and global (dashed line) informed sampling
on the 2D hallway (left) and the 4-arm box-stacking (right)
scenarios.

RRT* BiRRT* PRM*

Fig. 8: Planners with (solid line) and without (dashed line) short-
cutting on the 2D hallway (left) and the 4-arm box-stacking (right)
scenarios. All planners are using locally informed sampling.

slower convergence to the optimal solution (see Fig. 9). We
find that this is the case since the samples that we have
are non-uniformly distributed around the transitions. The
difference in speed can largely attributed to the fact that many
more connections are added to the queue in the radius based
connection strategy compared to the k-nearest approach. This
leads to a higher branching factor, and thus a slower planner.

VI. DISCUSSION & LIMITATIONS

There are some limitations on the scaling of the planners:
that they do not scale well both with the number of robots
(due to the increase in state-space dimensions) and they do
not scale well with the number of goals. These limitations
stem mostly from the decision to plan in the composite space
and to treat the complete problem as one single big planning
problem.

While we introduce a problem formulation that deals with
dependency graphs, this increases the size decision space,
and we believe that there could be a better way to approach
the problem than a brute force search, which the sampling
based planners do here.

Despite these limitations, we find that the planning in
composite space is likely good enough for many complex
industrial settings, where the number of used robots does
not go much beyond 4 robots. We believe that a promising
approach for improving the planner performance is leverag-
ing the structure of the problem space, i.e., using the fact that
we are dealing with multiple robots and multiple sub-goals,
by, e.g., not planning over the full horizon directly, but only
planning for a finite horizon.

VII. CONCLUSION

We presented a formalization of the multi-modal multi-
robot multi-goal motion planning problem, and a benchmark

PRM* (radius) PRM* (k-nearest)

Fig. 9: Different connection strategies for the PRM planner on the
2D hallway (left) and the 4-arm box-stacking (right) scenario.

containing diverse problems reaching from simple environ-
ments with short goal sequences, to relatively long horizon
problems requiring coordination of multiple robots. We intro-
duced two planners that are probabilistically complete, with
both of them being asymptotically optimal, based on an RRT
planner, and a PRM planner respectively.

The planners that we propose are not expected to scale to
very long horizon problems or problems with a large amount
of robots. However, we believe that considering the problem
in composite space helps understand the implication that,
e.g., priorization in planning has in the continuous space,
and through that better understanding, help develop better
planners.

There are some clear improvements possible, such as such
exploiting the multi-robot structure of the planning problems
by adapting, e.g., dRRT to our problems. Further, the nature
of the mode families [39], or the multi-query-like structure of
the problem [40] could be used. We also believe that receding
horizon-planners are an interesting avenue of research in
order to transition this purely offline planning approach to
real world execution.

Finally, the formulation we propose supports extension of
the transition logic to multi-robot task and motion planning
by changing how the next mode, respectively the mode
sequence is generated.
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